

Racs

[image: Screenshot 1]

Overview

racs (Raja's Attempt at a Continuous Something) is a simple tool for building and deploying OCI images (docker, podman, etc) from git repositories.

It is deliberately minimal in options, with a fixed set of build steps for all projects. Unlike many other continuous build tools, racs is designed for incremental builds with tools such as make, gradle and of course rabs [https://rabs.readthedocs.io].

Features

racs provides the following features:

	Simple web UI and API, including webhooks for pulling and building projects.

	Support for incremental builds. Every project is given its own working directory that persists between builds. The UI and API provide commands for emptying the working directory and performing a clean checkout if required.

	Projects can trigger other projects after each build. This allows for more complex project build workflows.

	Build scripts can be uploaded outside of the git repository. This means racs can work with existing projects without requiring any changes to their codebases.

Limitations

racs has several limitations, some due to implementation time constraints and others intentional:

	Hard-coded to use podman for all image builds. It is expected that racs is running on its own server or container with a working podman available. This may become configurable in the future.

	Only supports PAM based authentication, authenticating against the local users. With racs running on its own server, this should be sufficient. This may become configurable in the future.

	Fixed build steps for all projects: clean → clone → prepare → pull → build → pacakge → push.

Installation

racs is written in go so assuming go is already installed on a machine, building racs is simply:

$ git clone https://github.com/wrapl/racs.git
$ cd racs
$ go build

The result racs executable should then be run in the desired directory:

$ cd /path/to/projects
$ /path/to/racs -port 8080 -ssl-cert ssl.crt -ssl-key ssl.key -no-login true

Options

	-port <num>:

	Sets the port number for the web server, defaults to 8080.

	-no-login:

	Allows users to perform all operations without logging in.

	-ssl-cert:

	Uses HTTPS instead of HTTP, with the provided SSL cert file.

	-ssl-key:

	The SSL key file to use.

Contents:

	Usage
	Login / Logout

	Projects Overview

	Creating Projects

	Project Uploads

	Build Stages

	Project Version

	Triggers

Usage

Login / Logout

By default, racs requires users to login before performing certain operations. Users can login by clicking LOGIN in the top bar and entering their credentials. Currently racs uses PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module] for authentication, effectively users are authenicated against the underlying operating system.

Projects Overview

Each buildable unit in racs is called a project. Each project is assigned an increment integer identifier, starting at 1. Projects are stored in the /projects directory with the following structure:

	📁 projects
	📁 1
	📁 context

	📁 workspace
	📁 source

	📁 2
	📁 context

	📁 workspace
	📁 source

	📁 ...

Each project directory has the following contents:

	/context:

	is the context for the prepare and package stages.

	/workspace:

	is the working directory for the build and package stages.

	/workspace/source:

	is the cloned source directory.

Note

The /workspace directory for each project is preserved between builds and mounted automatically as /workspace during the build and package stages. This allows for builds to be incremental since build output is reused. The clean stage can be used to clear the /workspace/source directory.

Creating Projects

Projects can be created by clicking CREATE PROJECT in the top bar (logging in first if necessary). A dialog appears for entering the new project's details. Note that all the details can also be entered or changed later.

	Name:

	The name of the project, for display purposes only.

	URL:

	The URL of the git repository for the project.

	Branch:

	The git branch to clone / pull.

	Destination:

	Optional An OCI container registry to push the built image.

	Tag:

	Optional A template for the image tag when pushing to an OCI container registry.

The project tag can contain variables of the form $NAME which are substituted when an image is created:

	$VERSION:

	Replaced with the latest successful build version, incremented automatically, starting from 1.

After creating a project, at least 2 additional files need to be uploaded before the project can be built.

Project Uploads

Additional files can be uploaded to a project's directory. Users can open the project settings dialog by clicking the button and then switching to the Upload tab. Files can be uploaded to any path in the project's directory.

Container Spec Files

racs requires 2 OCI container spec files to be available somewhere in the project directory for creating the build image and package image for the project. These files can be located anywhere in the project directory and named anything but by default are expected to reside at /BuildSpec and /PackageSpec respectively. This allows racs to be used to build projects which do not contain the necessary container spec files in their repositories.

The paths of the build and package spec files can be changed using the project settings dialog by clicking the button and switching to the Settings tab. For projects that keep the build and package spec files within the git repository, these paths can be changed to something like /workspace/source/BuildSpec and /workspace/source/PackageSpec.

Build Stages

Every project has a fixed set of build stages. After each stage is complete, the next stage is automatically started. Users can manually restart the build process from a specific using the --Build-- dropdown for each project.

	Clean:

	Deletes the project's /workspace/source directory.

	Clone:

	Recursively clones the selected branch of the project's git repository into a directory called /source.

	Prepare:

	Builds the OCI container (using BuildSpec) that will be used for building / updating the project when required.

	Pull:

	Recursively pulls the latest changes from the git repository. This is the default starting point for each subsequent build after the initial build.

	Build:

	Runs the build image with the /workspace directory mounted. The build image's ENTRYPOINT should be the build command for the project.

	Package:

	Builds the OCI container (using PackageSpec) that will be tagged and pushed to the remote registry.

	Push:

	Pushes the package image to the remote registry. If no destination is specified for this project then this stage does nothing.

Project Version

Each time a project's package stage completes successfully, it's version is incremented. This can be used in the image tag when pushing to a container registry by using $VERSION in the project tag setting.

Triggers

Each time a project's push stage completes successfully, it can trigger other projects to start building from a specified stage. Triggers can be configured for a project by clicking the buttons an switching to the Triggers tab.

When triggered from another project, the additional environment variable RACS_TRIGGER is passed to the build stage with the triggering project's tag value.

Index

 nav.xhtml

 Table of Contents

 		
 Racs

 		
 Usage

 		
 Login / Logout

 		
 Projects Overview

 		
 Creating Projects

 		
 Project Uploads

 		
 Container Spec Files

 		
 Build Stages

 		
 Project Version

 		
 Triggers

_images/screen1.png
RACS AddtUpdate sty CreateProect | Logaut |

Minilang Prepackage #1 | PusH_success | Minilang #2 | PUSH_succEss |
Version: 4 _ Version: 15 “
180 PREPARING [BUCEESS] 2021-08-2909:18:17 168 PUSHING |SUGEEss)] 2021-08-2909:04:38
181 PULLING |SUCEEs] 2021-08-2909:18:19 176 PACKAGING [SUGEES| 2021-08-2909:06:08
182 BUILDING [SUCEESS] 2021-08-2909:18:20 177 PUSHING [SUGEEs)] 2021-08-2909:06:13
183 PACKAGING [BUCEESS] 2021-08-2909:18:20 185 PACKAGING [BUGEESS| 2021-08-2909:18:31
184 PUSHING |SUCEEs] 2021-08-2909:18:31 186 PUSHING |SUGEEs)] 2021-08-2909:18:37

Upload Settings Triggers - Upload Settings Triggers -

_static/plus.png

_static/file.png

_static/minus.png

